CERES Cloud Radiative Swath (CRS) Validation & Improvements to FLASHFlux via Machine Learning

Ryan Scott, Fred Rose, David Rutan

Science Systems & Applications, Inc.

Paul Stackhouse, Seiji Kato, David Doelling, Norman Loeb

NASA Langley Research Center

- CERES observes TOA radiation but to understand climate we also need surface & atmospheric fluxes
 - The current L2 Single Scanner Footprint (SSF) product estimates surface fluxes w/ simple parameterizations (Model B)
- The Cloud Radiative Swath (CRS) product reintroduced at last STM builds upon the SSF by calculating instantaneous instrument footprint-level irradiances using the NASA LaRC Fu-Liou radiative transfer model
 - SW↓↑ & LW↓↑ broadband flux profiles + Surface narrowband SW & LW, direct + diffuse SW↓, PAR, UV fluxes
 - How does CRS compare to Surface-Only Flux Algorithms (SOFA) Model B & other CERES flux products?

- CERES observes TOA radiation but to understand climate we also need surface & atmospheric fluxes
 - The current L2 Single Scanner Footprint (SSF) product estimates surface fluxes w/ simple parameterizations (Model B)
- The Cloud Radiative Swath (CRS) product reintroduced at last STM builds upon the SSF by calculating instantaneous instrument footprint-level irradiances using the NASA LaRC Fu-Liou radiative transfer model
 - SW↓↑ & LW↓↑ broadband flux profiles + Surface narrowband SW & LW, direct + diffuse SW↓, PAR, UV fluxes
 - How does CRS compare to Surface-Only Flux Algorithms (SOFA) Model B & other CERES flux products?
- Here we update & extend our analysis from the last STM to cover an entire year (2019):
 CRS vs (1) CERES TOA observations, (2) SSF Model B surface fluxes, (3) SYN1deg surface fluxes

	CERES CRS	CERES SSF Ed4A	FLASHFlux SSF v4A	CERES SYN1deg-Hr
L2/L3	Instantaneous footprint	Instantaneous footprint	Instantaneous footprint	TISA gridded, hourly (L3)
Surface	Fu-Liou RT model	Model B parameterization	Model B parameterization	Fu-Liou RT model

- CERES observes TOA radiation but to understand climate we also need surface & atmospheric fluxes
 - The current L2 Single Scanner Footprint (SSF) product estimates surface fluxes w/ simple parameterizations (Model B)
- The Cloud Radiative Swath (CRS) product reintroduced at last STM builds upon the SSF by calculating instantaneous instrument footprint-level irradiances using the NASA LaRC Fu-Liou radiative transfer model
 - SW↓↑ & LW↓↑ broadband flux profiles + Surface narrowband SW & LW, direct + diffuse SW↓, PAR, UV fluxes
 - How does CRS compare to Surface-Only Flux Algorithms (SOFA) Model B & other CERES flux products?
- Here we update & extend our analysis from the last STM to cover an entire year (2019):
 CRS vs (1) CERES TOA observations, (2) SSF Model B surface fluxes, (3) SYN1deg surface fluxes

	CERES CRS	CERES SSF Ed4A	FLASHFlux SSF v4A	CERES SYN1deg-Hr
L2/L3	Instantaneous footprint	Instantaneous footprint	Instantaneous footprint	TISA gridded, hourly (L3)
Surface	Fu-Liou RT model	Model B parameterization	Model B parameterization	Fu-Liou RT model
TOA	Fu-Liou RT model	Observations	Observations	Fu-Liou & Observations

- CERES observes TOA radiation but to understand climate we also need surface & atmospheric fluxes
 - The current L2 Single Scanner Footprint (SSF) product estimates surface fluxes w/ simple parameterizations (Model B)
- The Cloud Radiative Swath (CRS) product reintroduced at last STM builds upon the SSF by calculating instantaneous instrument footprint-level irradiances using the NASA LaRC Fu-Liou radiative transfer model
 - SW↓↑ & LW↓↑ broadband flux profiles + Surface narrowband SW & LW, direct + diffuse SW↓, PAR, UV fluxes
 - How does CRS compare to Surface-Only Flux Algorithms (SOFA) Model B & other CERES flux products?
- Here we update & extend our analysis from the last STM to cover an entire year (2019):
 CRS vs (1) CERES TOA observations, (2) SSF Model B surface fluxes, (3) SYN1deg surface fluxes

	CERES CRS	CERES SSF Ed4A	FLASHFlux SSF v4A	CERES SYN1deg-Hr
L2/L3	Instantaneous footprint	Instantaneous footprint	Instantaneous footprint	TISA gridded, hourly (L3)
Surface	Fu-Liou RT model	Model B parameterization	Model B parameterization	Fu-Liou RT model
TOA	Fu-Liou RT model	Observations	Observations	Fu-Liou & Observations

- CERES observes TOA radiation but to understand climate we also need surface & atmospheric fluxes
 - The current L2 Single Scanner Footprint (SSF) product estimates surface fluxes w/ simple parameterizations (Model B)
- The Cloud Radiative Swath (CRS) product reintroduced at last STM builds upon the SSF by calculating instantaneous instrument footprint-level irradiances using the NASA LaRC Fu-Liou radiative transfer model
 - SW↓↑ & LW↓↑ broadband flux profiles + Surface narrowband SW & LW, direct + diffuse SW↓, PAR, UV fluxes
 - How does CRS compare to Surface-Only Flux Algorithms (SOFA) Model B & other CERES flux products?
- Here we update & extend our analysis from the last STM to cover an entire year (2019):

 CRS vs (1) CERES TOA observations, (2) SSF Model B surface fluxes, (3) SYN1deg surface fluxes

	CERES CRS	CERES SSF Ed4A	FLASHFlux SSF v4A	CERES SYN1deg-Hr
L2/L3	Instantaneous footprint	Instantaneous footprint	Instantaneous footprint	TISA gridded, hourly (L3)
Surface	Fu-Liou RT model	Model B parameterization	Model B parameterization	Fu-Liou RT model
TOA	Fu-Liou RT model	Observations	Observations	Fu-Liou & Observations

- Can we use CRS to improve FLASHFlux low-latency surface fluxes for the applied science community?
 - (4) Preliminary development & evaluation of Machine Learning models to provide rapid & accurate surface radiative fluxes

<u>Inputs</u>

CERES SSF Ed4A

geolocated FOVs, etc.

GEOS 5.4.1

T(z), p(z), q(z), $O_3(z)$ surface wind speed

MODIS

cloud properties (Ed4)
AOD (sometimes)
spectral albedo
land temp (clear)

SW↓↑

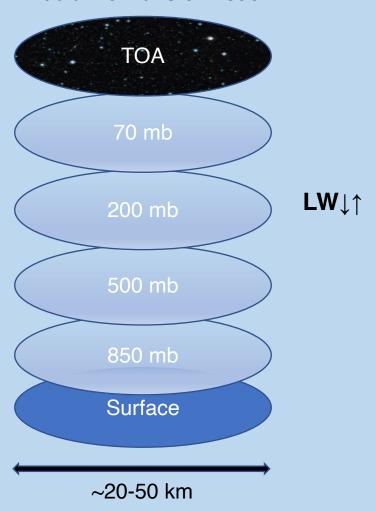
MATCH hourly aerosol profiles & AOD

IGBP surface type

albedo history map (cloudy)

CERES CRS

NASA Langley Fu-Liou Radiative Transfer Model



CERES Footprint / FOV Terra FM1, Aqua FM3

Outputs

instantaneous vertical profiles (6 levels) of broadband flux & spectrally-resolved fluxes at the surface and TOA

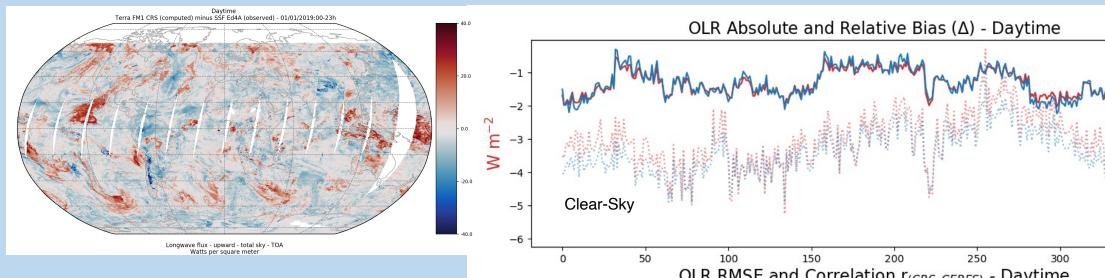
LW: 12 bands SW: 14 bands

(surface, all-sky)
SW↓ direct + diffuse
PAR, UV fluxes

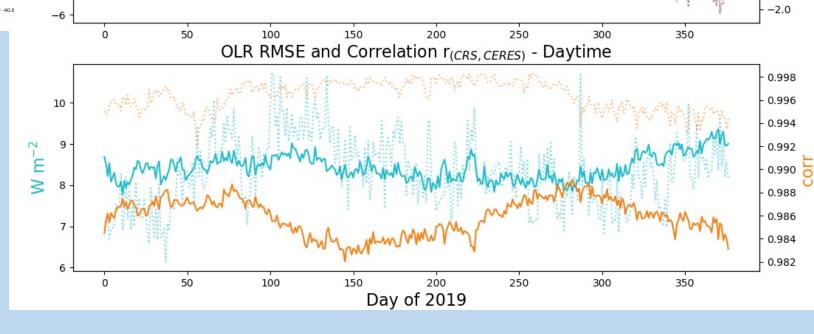
All-sky Clear-sky Pristine-sky All-sky no aerosol

> 2-stream LW 4-stream SW

TOA CRS Computed LW[↑] vs SSF Ed 4A Observations



- (↑) Daily, geographic ΔOLR variability
 - CRS minus CERES SSF observations
- (\rightarrow) Time series of OLR validation stats
- Global statistics remain relatively stable throughout 2019
- All-sky bias within -1% (\sim -1 to -2 W m⁻²)
- Negative clear-sky bias compensated by excessive OLR from high clouds
- ~ 7 W m⁻² global RMSE w/ strong correlation of modeled & observed fluxes



All-Sky

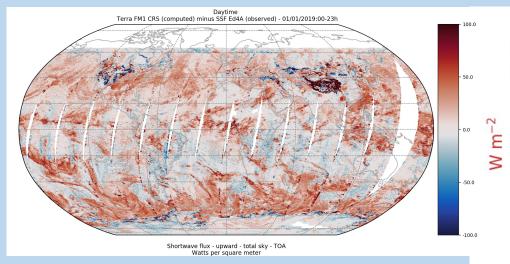
0.0

-0.5

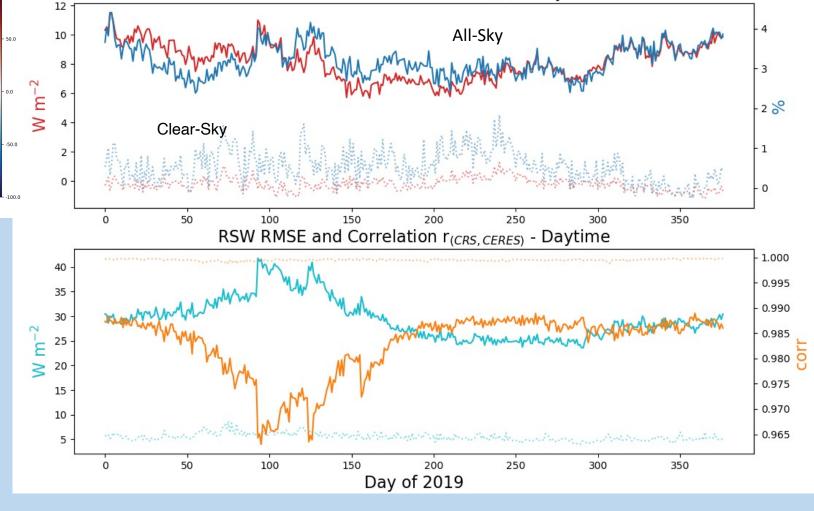
-1.5

-1.0 %

TOA CRS Computed SW↑ vs SSF Ed 4A Observations

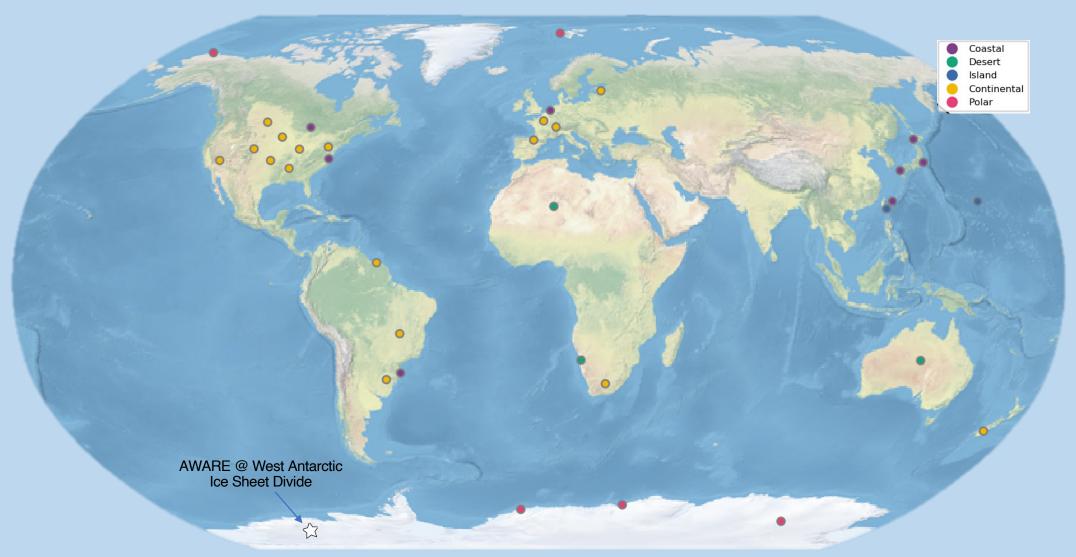


- (↑) Daily, geographic ΔRSW variability
 - CRS minus CERES SSF observations
- (\rightarrow) Time series of RSW validation stats
- Excessive reflection to space by clouds & occasionally the surface
 - ~ 3 4 % global mean all-sky bias
- Better clear-sky performance
 - ~ 0 1 % clear-sky relative bias
- Biases relatively stable through time
- RMS peak in boreal spring from surface albedo retrievals over NH continents



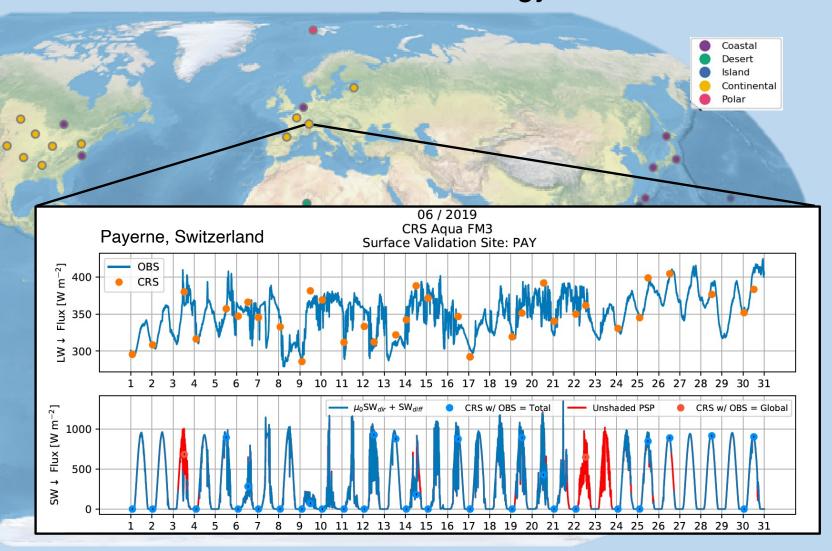
RSW Absolute and Relative Bias (Δ) - Daytime

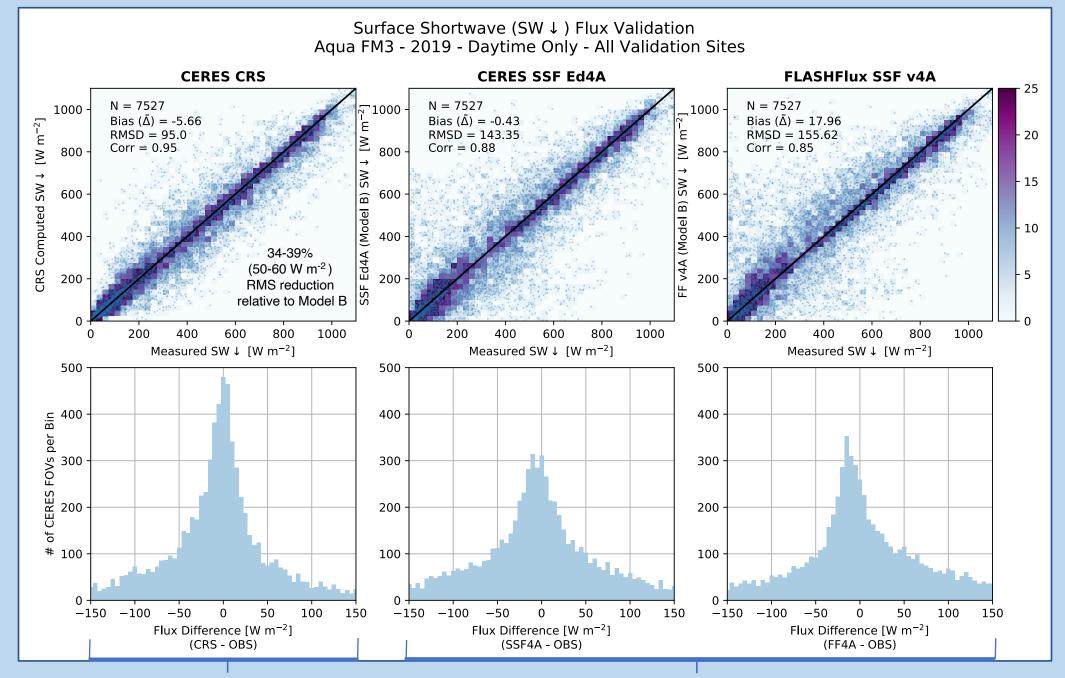
Surface Validation Sites



- · Using 1-min resolution surface data
- Extracting footprints within 10 km
- LW↓: instantaneous match to pyrgeometer obs. at footprint time
- SW↓: averaging surface obs. for 30 mins centered at footprint time
 - Total = Direct + Diffuse, resort to Global from unshaded PSP if total is unavailable
 - SW_{CRS} scaled by avg(μ_{OBS})/ μ_{CRS} to account for changing μ = cos(SZA)
- FOV size varies with instrument view zenith angle (source of noise)

Surface Flux Validation Methodology





Aqua FM3 Daytime SW↓ Fu-Liou vs Model B by surface type

CERES CRS

CERES SSF Ed4A

FLASHFlux SSF v4A

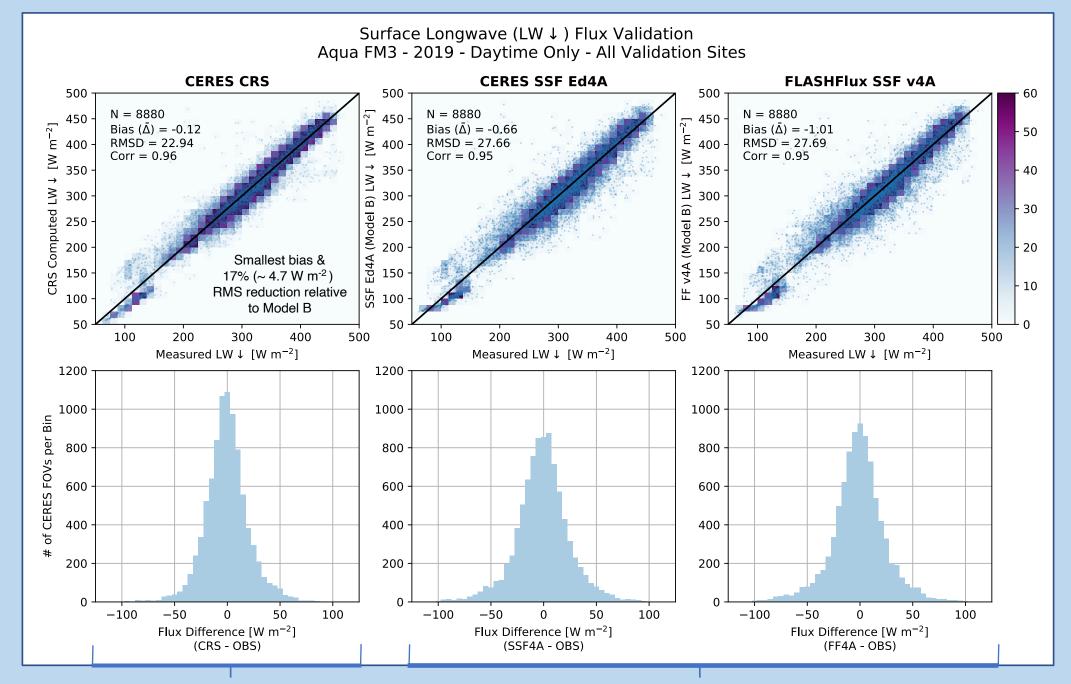
sw↓	N	Bias	RMSE	Corr.
All	7527	-5.66	<u>95.0</u>	<u>0.95</u>
Coastal	1366	- <u>4.4</u>	<u>100.21</u>	<u>0.93</u>
Desert	378	-11.4	<u>78.87</u>	0.92
Island	240	<u>45.62</u>	<u>147.13</u>	<u>0.86</u>
Continent	3049	- <u>1.69</u>	108.32	0.92
Polar	2494	- <u>15.27</u>	<u>66.11</u>	<u>0.94</u>

sw↓	N	Bias	RMSE	Corr.
All	7527	- <u>0.43</u>	143.35	0.88
Coastal	1366	14.14	130.82	0.88
Desert	378	- <u>0.54</u>	89.09	0.89
Island	240	68.57	154.37	0.86
Continent	3049	6.12	120.36	0.91
Polar	2494	-23.03	177.32	0.58

SW↓	N	Bias	RMSE	Corr.
All	7527	17.96	155.62	0.85
Coastal	1366	10.53	136.55	0.87
Desert	378	-13.7	92.74	0.88
Island	240	70.22	156.01	0.86
Continent	3049	13.39	132.54	0.88
Polar	2494	27.39	194.32	0.56

Fu-Liou RT Model Fluxes

Model B Parameterized Fluxes



Aqua FM3 Daytime LW↓ Fu-Liou vs Model B by surface type

CERES CRS

CERES SSF Ed4A

FLASHFlux SSF v4A

LW↓	N	Bias	RMSE	Corr.
All	8880	<u>-0.12</u>	<u>22.94</u>	<u>0.96</u>
Coastal	1608	3.48	<u>15.56</u>	<u>0.97</u>
Desert	448	-13.04	<u>23.24</u>	0.93
Island	313	<u>4.98</u>	<u>13.72</u>	<u>0.87</u>
Continent	3293	3.56	<u>25.75</u>	<u>0.91</u>
Polar	3218	-4.37	<u>23.65</u>	<u>0.95</u>

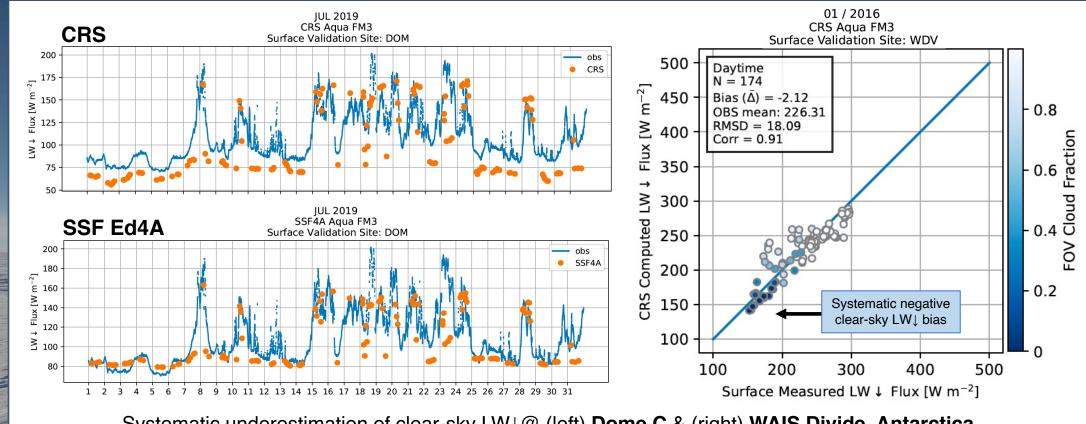
LW↓	N	Bias	RMSE	Corr.
All	8880	-0.66	27.66	0.95
Coastal	1608	<u>-0.38</u>	26.25	0.91
Desert	448	<u>-7.51</u>	29.71	0.85
Island	313	6.38	17.82	0.83
Continent	3293	0.9	28.73	0.89
Polar	3128	-2.13	27.73	0.93

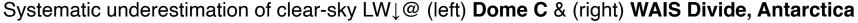
N	Bias	RMSE	Corr.
8880	-1.01	27.69	0.95
1608	-1.01	26.55	0.91
448	-7.83	26.78	0.87
313	5.35	18.34	0.82
3293	<u>-0.7</u>	29.16	0.89
3128	- <u>1.0</u>	27.6	0.93
	8880 1608 448 313 3293	8880 -1.01 1608 -1.01 448 -7.83 313 5.35 3293 <u>-0.7</u>	8880 -1.01 27.69 1608 -1.01 26.55 448 -7.83 26.78 313 5.35 18.34 3293 -0.7 29.16

Fu-Liou RT Model Fluxes

Model B Parameterized Fluxes

Polar Clear-Sky Surface LW↓ **Fluxes**



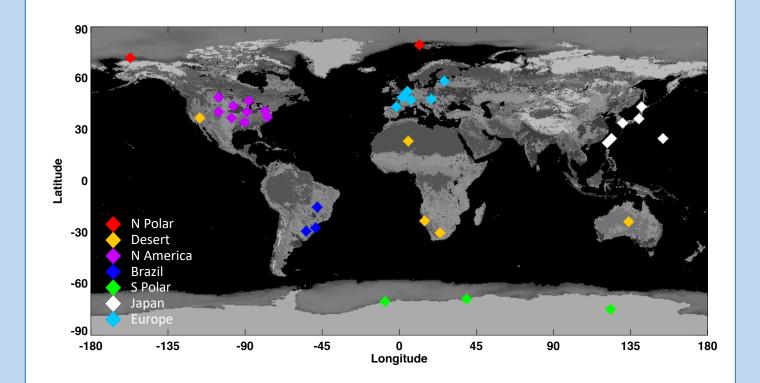


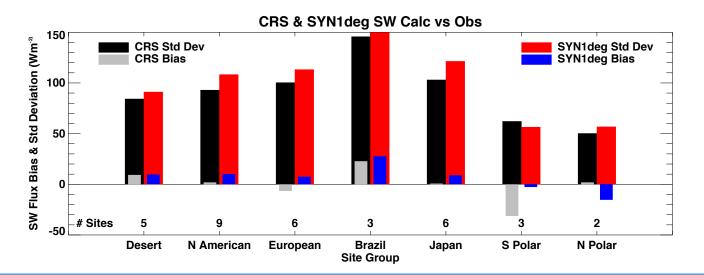
Surface-based thermal inversion not well resolved in GEOS 5.4.1

Starting to develop inversion correction following Gupta et al. 2010

CRS vs SYN1deg Surface (\(\psi \) Flux Validation

- SYN1deg provides gridded hourly surface fluxes also calculated using the Fu-Liou RT model
- We also compared CRS to SYN1deg
 - SYN1deg fluxes compared to 1-hr average of the obs. centered on the half hour
- Both products are reasonably consistent & show similar statistics
- CRS has a smaller SW↓ bias & std. dev. (σ) everywhere but Antarctica
 - Footprints more representative of surface observations than 1° grid cells
 - CRS cloud optical depths are unrealistically high over permanent snow and ice surfaces
- CRS and SYN1deg also show similar results in the LW↓

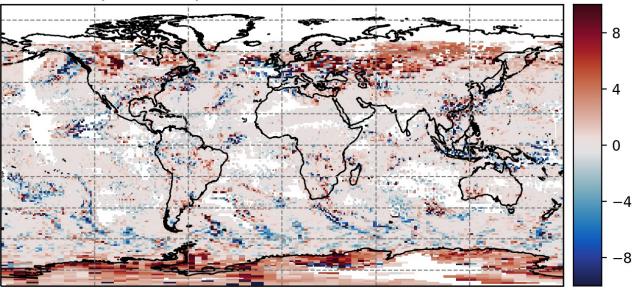


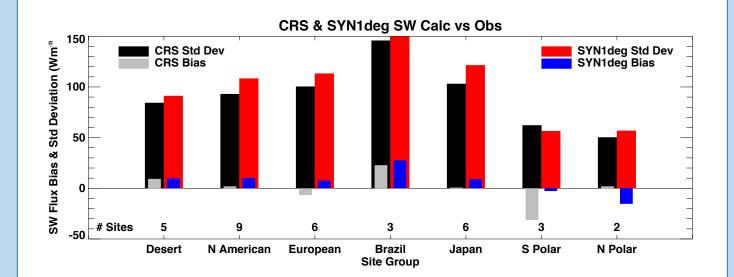


CRS vs SYN1deg Surface (\(\psi \) Flux Validation

- SYN1deg provides gridded hourly surface fluxes also calculated using the Fu-Liou RT model
- We also compared CRS to SYN1deg
 - SYN1deg fluxes compared to 1-hr average of the obs. centered on the half hour
- Both products are reasonably consistent & show similar statistics
- CRS has a smaller SW↓ bias & std. dev. (σ) everywhere but Antarctica
 - Footprints more representative of surface observations than 1° grid cells
 - CRS cloud optical depths are unrealistically high over permanent snow and ice surfaces
- CRS and SYN1deg also show similar results in the LW↓

Daytime Aqua Only CRS1deg $_{\beta}$ -Hr minus SYN1deg-Hr Cloud Optical Depth [no units] 01-01-2019:00-23h





Can We Use CRS & Machine Learning to Improve FLASHFlux SSF Surface Fluxes?

Problem:

- FLASHFlux (P. Stackhouse's talk next) provides near real-time estimates of Earth's surface radiation budget components for agricultural, renewable energy, and other applications
- Currently, footprint-level surface fluxes are estimated using decades-old parameterizations (Model B) that, as we just showed, are generally inferior to CRS fluxes from the Fu-Liou radiative transfer model.
- However, running the Fu-Liou code at the CERES instrument footprint level is computationally expensive (~ 2.3M computations, ~12-16+ hours/day) and increases the difficulty of meeting latency requirements

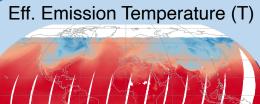
Can We Use CRS & Machine Learning to Improve FLASHFlux SSF Surface Fluxes?

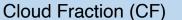
Problem:

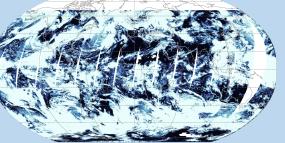
- FLASHFlux (P. Stackhouse's talk next) provides near real-time estimates of Earth's surface radiation budget components for agricultural, renewable energy, and other applications
- Currently, footprint-level surface fluxes are estimated using decades-old parameterizations (Model B)
 that, as we just showed, are generally inferior to CRS fluxes from the Fu-Liou radiative transfer model.
- However, running the Fu-Liou code at the CERES instrument footprint level is computationally expensive (~ 2.3M computations, ~12-16+ hours/day) and increases the difficulty of meeting latency requirements

Approach / Solution:

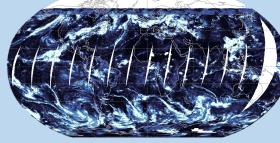
- Train supervised machine learning algorithms on CRS data, tune hyperparameters, & evaluate model
 performance to "learn" functional mappings that can accurately & rapidly predict CRS surface fluxes –
 no need to run the Fu-Liou RT code!
 - Linear, Decision Tree, Random Forest, & XGBoost Regressors





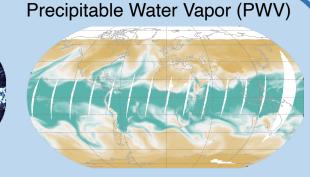


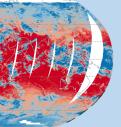
Lower Tropospheric Stability (LTS)

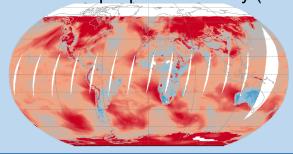


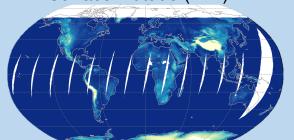
Cloud Optical Depth (COD)

Surface Altitude (ALT)









 Provides functional mappings between meteorological parameters

 $\mathbf{X} =$

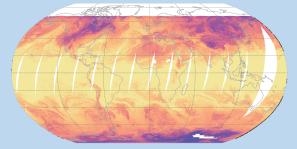
T, CF, COD, CT, PWV, LTS, ALT

that are physically relevant and readily available in the FLASHFlux data processing stream & the CRS flux

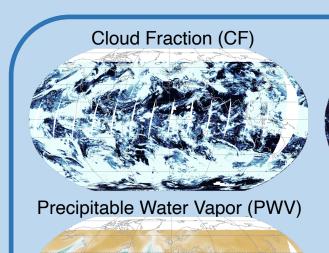
$$LW \downarrow = \mathbf{f}_i(\mathbf{X})$$

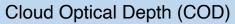
Linear Decision Tree Random Forest XGBoost

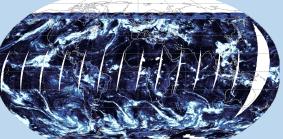
Surface Longwave Flux (LW↓)



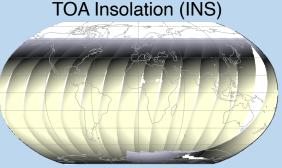
- Standardize X prior to training
- Train on day & night footprints
- Assess performance & tune hyperparameters using different evaluation metrics:
- 80/20 Train-Test Split
- K-Fold Cross Validation
- Randomized Search CV (in progress)



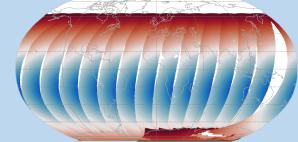




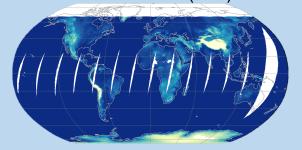
Aerosol Optical Depth (AOD)



Solar Zenith Angle (SZA)



Surface Altitude (ALT)



 Provides functional mappings between meteorological parameters

 $\mathbf{X} =$

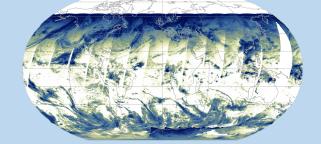
INS, SZA, CF, COD, AOD, PWV, ALT

that are physically relevant and readily available in the FLASHFlux data processing stream & the CRS flux

$$SW \downarrow = \mathbf{g}_i(\mathbf{X})$$

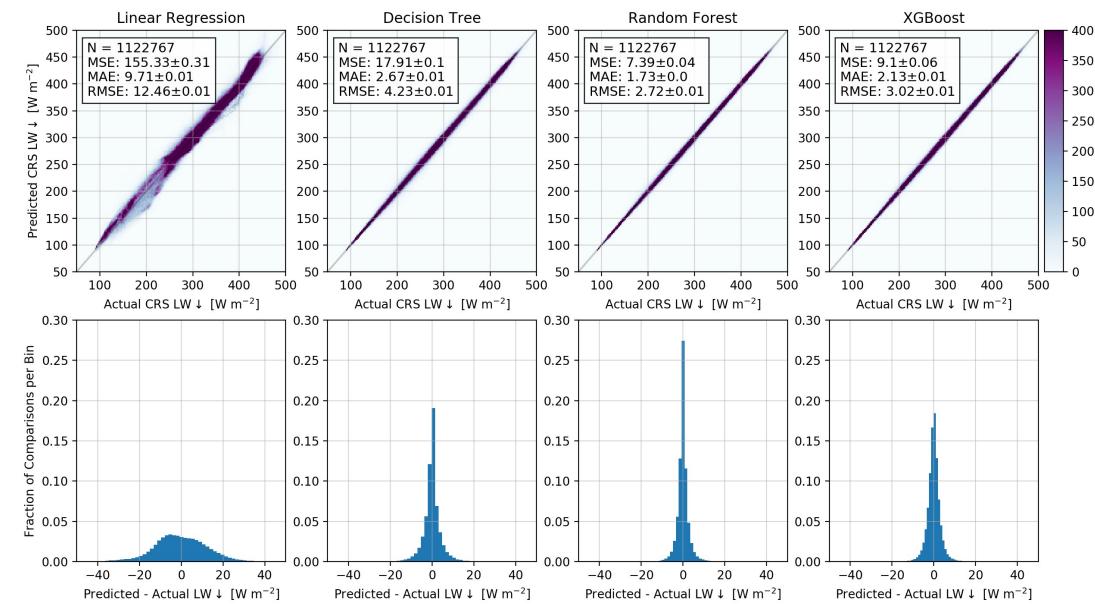
Linear Decision Tree Random Forest XGBoost

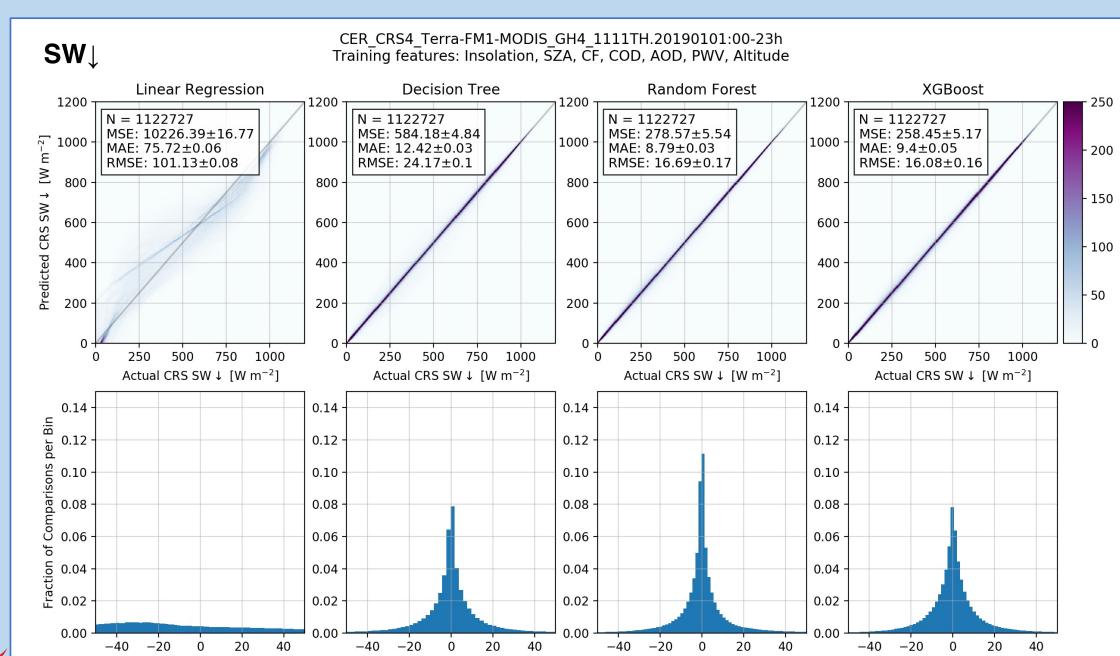
Surface Shortwave Flux (SW↓)



- Standardize X prior to training
- Train on daytime footprints
- Assess performance & tune hyperparameters using different evaluation metrics:
- 80/20 Train-Test Split
- K-Fold Cross Validation
- Randomized Search CV (in progress)

CER_CRS4_Terra-FM1-MODIS_GH4_1111TH.20190101:00-23h Training features: Cloud properties (fraction, optical depth, temperature), \bar{T} , PWV, LTS, ALT





Predicted - Actual SW ↓ [W m⁻²]

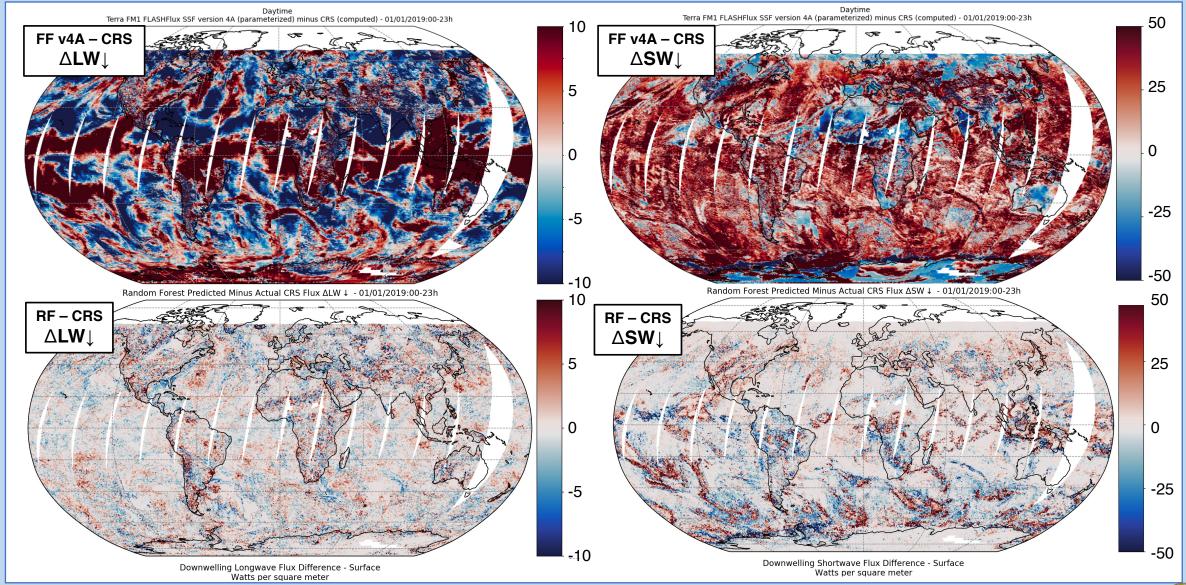
Predicted - Actual SW ↓ [W m⁻²]

Predicted - Actual SW ↓ [W m⁻²]

Predicted - Actual SW ↓ [W m⁻²]

Random Forest (RF) surface flux predictions much closer to CRS than FLASHFlux Model B

(top) FLASHFlux SSF v4A – CRS (bottom) RF – CRS flux difference (Δ) [W m⁻²]



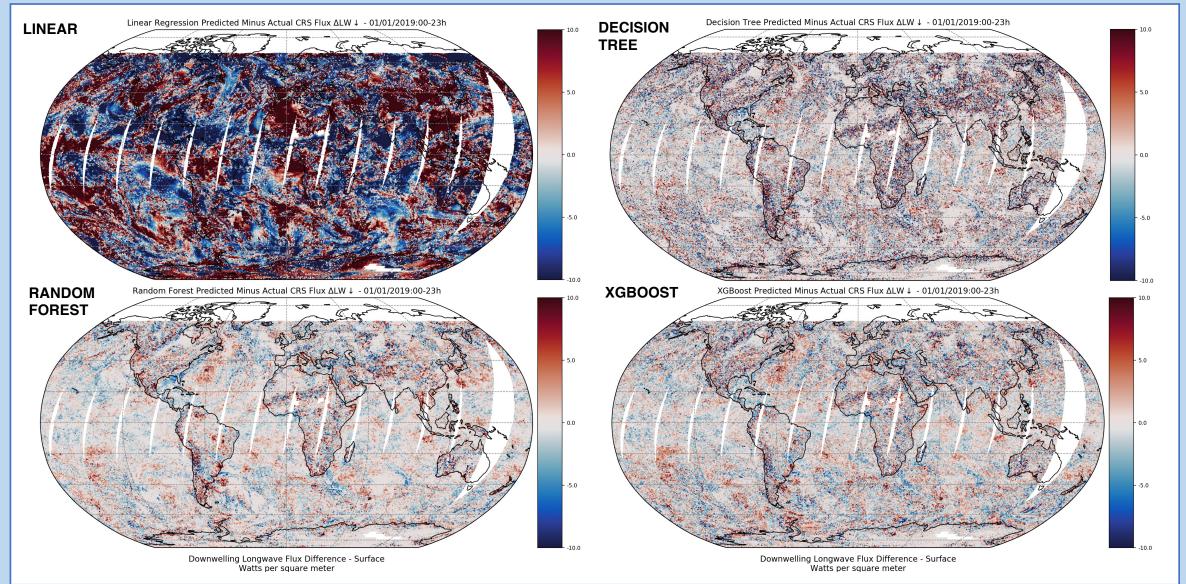
Summary & Future Work

- CRS computes instantaneous footprint-level irradiances using the NASA Langley Fu-Liou RT code
 - Here we summarized our progress resurrecting & validating CRS since we first reintroduced it 6 months ago
- Comparisons to CERES global TOA measurements show reasonable & stable performance
 - Global mean all-sky LW↑ within 1% of CERES, SW↑ within 3 4% of CERES throughout 2019
- CRS surface fluxes are superior to SOFA Model B parameterized fluxes (SSF Ed4A, FF SSF v4A)
 - Based on 2019 validation by surface site type using measurements from the CAVE database
 - SW↓ RMS reduction of 34 39% (50 60 W m⁻²), higher correlation, lower bias for most site types
 - LW↓ RMS reduction of 17% (~ 4.7 W m⁻²), marginally increased correlation, lowest overall bias
 - Corrections needed for excessive Antarctic cloud optical depth & unresolved temperature inversions
- Machine learning with CRS offers a viable solution to improve FLASHFlux SSF surface fluxes
 - We have developed, trained, & evaluated Linear, Decision Tree, Random Forest, & XGBoost regressors
 - Random Forest & XGBoost successfully reproduce CRS fluxes w/ model RMS values less than the validation RMS
 Δ between CRS & Model B; individual footprint errors are typically << Δ(FF CRS)
 - Next Steps: continue tuning models (RF & XGBoost) & devise scalable training methodology deploy models in production & use as the operational source of FLASHFlux SSF surface fluxes
- We plan to release CRS publicly with CERES Edition 5 data products
- Thank You!

Extra Slides

Surface LW Model Performance

Predicted - Actual Flux [W m-2]



Surface SW \ Model Performance

Predicted - Actual Flux [W m-2]

